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A new quadratic response surface modeling method is presented. In this method, the incom- 

plete small composite design (ISCD) is newly proposed to reduce the number of experimental 

runs than that of the SCD. Unlike the SCD, the proposed ISCD always gives a unique design 

assessed on the number of factors, although it may induce the rank-deficiency in the normal 

equation. Thus, the singular value decomposition (SVD) is employed to solve the normal 

equation. Then, the duality theory is used to newly develop the conservative least squares fitting 

(CONFIT)  method. This can directly control the over- or the under-estimation behavior of the 

approximate functions. Finally, the performance of CONFIT  is numerically shown by 

comparing its' conservativeness with that of conventional fitting method. Also, optimizing one 

practical design problem numerically shows the effectiveness of the sequential approximate 

optimization (SAO) combined with the proposed ISCD and CONFIT.  
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1. Introduction 

As expensive analyses and experiments are fre- 

quently encountered in the modern engineering 

optimizations, sequential approximate optimiza- 

tions (SAO) combined with response surface mo- 

dels (RSM) have gained in popularity. Thus, it is 

important in constructing response surface models 

to achieve an acceptable level of accuracy while 
attempting to minimize the computational effort, 

i.e. the number of system analyses or experiments. 

Although increasing the number of points could 

improve the accuracy of the approximate model, 
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many studies have concentrated on reducing the 

number of points that represent expensive analy- 

ses and experiments (Box and Wilson, 1951 ; Box 

and Hunter, 1957 ; Hartley, 1959 ; Westlake, 1965 ; 

Draper, 1985 ; Draper and Lin, 1990 ; Myers and 

Montgomery, 1995). Among them, although the 

small composite design (SCD), proposed by Dra- 

per (1985) and Draper and Lin (1990), is one of 

the minimum design for constructing the second- 

order response surfaces, it requires more than 
the saturate points that are heuristically deter- 

mined. For  this reason, response surface models, 

like most other experimental techniques, are se- 

verely limited in the number of design variables 

that they handle. 
However, it is noted that the general procedure 

of design optimization is iterative until some con- 

vergence criteria are satisfied, even though several 
approximation techniques are employed (Bar- 
thelemy and Haftka, 1993). In other words, in 
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order to guarantee the convergence of the itera- 

tive optimization, many approximate models are 

sequentially employed during the subsequent itera- 

tions. This represents that the complete quadratic 

response surface model is not a necessary require- 

ment in the sequential approximate optimization 

process. 

This study proposes an Incomplete Small Com- 

posite Design (ISCD) for efficiently constructing 

the quadratic response surface model and a con- 

servative least-square fitting method (CONFIT)  

for improving the feasibility and the usability of 

response surface model in the engineering opti- 

mization. Chapter 2 reviews the composite desi- 

gns for second-order  response surface modeling. 

Especially, the small composite designs are more 

detailed reviewed. Chapter 3 presents the basic 

idea of the proposed ISCD and describes the least 

square methods to solve the rank-deficient nor- 

mal equations caused by 1SCD. Then, the basic 

algorithm for CONFIT  is clearly explained. In 

chapter 4, a computational procedure of the SAO 

combined with the ISCD and the CONFIT.  Then, 

in Chapter 5, the performances of  the proposed 

methods are numerically examined by solving 

two practical design problems. Finally, Section 6 

presents the conclusion of this study. 

2. Review of Composite Designs for 
Second-Order Response Surface 

Modeling 

Composite designs for fitting second-order re- 

sponse surfaces were first introduced by Box and 

Wilson (1951) and followed up by Box and Hun- 

ter (1957). A composite design, shown in Fig. I, 

consists of a 24 factorial or a 2 k-q fractional 

factorial portion, with runs selected from the 24 

runs (xl,  xz, "", xk) = ( + I ,  ± I , - " ,  + l )  usually 

of resolution Vor higher, plus a set of  2k axial 

points at a distance ~r from the origin, plus no 

center points. Thus we have a total of 2k-q+ 

2 k + n o  points. In general, the 2 h-q portion (or 

cube) may be repeated c times and the axial 

points (or stars) may be repeated s times. The 

value of a no, c and s are to be selected by the 
experimenter. 
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A typical central composite design for k=3,  
q = 0 a n d  n0=l 

Composite designs are extremely useful for se- 

quential experimentation in which the cube por- 

tion is used to allow estimation of the first-order 

effects and the later addition of the star points 

permits second-order terms to be added to the 

model and estimated. However, when experimen- 

tation is expensive, difficult, or time-consuming, 

small designs might be appropriate,  especially 

when an independent estimate of experimental 

error is available. 

Hartley (1959) pointed out that, for estimation 

of the second-order surface, the cube portion of 

the composite design need not be of resolution V. 

It could be of resolution as low as III, provided 

that two-factor interactions were not aliased with 

other two-factor interactions. Hartley employed a 

smaller fraction of the 2 k factorial than is used in 

the original Box-Wilson designs and so reduced 

the total number of points. Hartley's cubes may be 

designated resolution III*, meaning a design of 

resolution III but with no words of length four in 

the defining relation. 

Westlake (1965) provided a method for genera- 

ting composite designs based on irregular frac- 

tions of the 24 factorial system rather than using 

the complete factorials or regular fractions of 

factorials employed by Box and Wilson (1951) 
and Hartley (1959). Westlake provided three ex- 

amples for 22-run designs for k = 5 ,  one example 

of a 40-run design for k = 7 ,  and one example of 
a 62-run design for k = 9 .  

Draper (1985, 1990) proposed an alternative 

approach to obtaining small composite design 
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( S C D ) ,  which  employed  co lumns  of  the Plac- 

k e t t - B u r m a n  designs (1946) ra ther  t han  regular  

or i r regular  fractions.  D r a p e r  (1985) and  Drape r  

and  Lin  (1990) have  s h o w n  tha t  m a n y  smal l  com- 

posi te  designs exist. T he  fo rma t ion  of  these desi- 

gns are cons t ruc ted  by (1) us ing the 2k  axial  runs 

plus center  runs,  (2) add ing  the k co lumns  of  a 

P l a c k e t t - B u r m a n  design for the cube  po r t i on  to 

avoid  s ingular i ty  or  near  s ingular i ty ,  (3) whi le  

r emoving  one  of  each set of  dupl ica tes  if  dupl ica te  

runs  exist. D r a p e r  provided,  us ing  12-run,  2 8 - r u n  

and  4 4 - r u n  P l a c k e t t - B u r m a n  designs,  2 2 - r u n  desi- 

gn for k : 5 ,  4 2 - r u n  design for k : 7  and  6 2 - r u n  

design for k = 9 ,  respectively. However ,  his ap-  

p r o a c h  can  not  give a general  design assessed on  

the n u m b e r  of  factors, because  it is an ano the r  

op t imiza t ion  problem.  Fo r  the deta i led  in forma-  

t ion,  one  may  refer to the  references (Draper ,  

1985 ; D r a p e r  and  Lin, 1990). 

3. Conservative and Efficient 
Quadratic Response Modeling Method 

This  s tudy proposes  an Incomple te  Smal l  Com-  

posi te  Design ( ISCD) for large scaled response  

surface mode l ing  and  op t imiza t ion  in the context  

of  sequent ia l  app rox ima te  op t imiza t ion .  

3.1 Constructing the incomplete small  com- 

posite design 

In the  or ig ina l  SCD,  it is very difficult  to select 

the m i n i m u m  co lumns  of  a P l a c k e t t - B u r m a n  desi- 

gn for the cube  por t ion  to avo id  s ingular i ty  or 

near  s ingular i ty  whi le  r emov ing  one  of  each set 

of  dupl ica tes  if  dupl ica te  runs  exist, because  it 

is also an  op t imiza t ion  problem.  Thus,  D r a p e r  

(1985, 1990) p roposed  on ly  three designs assessed 

on  the three cases such as k : 5 ,  k : 7  and  k : 9 .  

ISCD fundamen ta l l y  uses 2k  axial  runs  plus 

center  runs  to represent  curva tures  of  the system 

and  a l low for efficient e s t imat ion  o f  the pure  qua-  

drat ic  terms. However ,  for cons t ruc t ing  the cube 

por t ion ,  a l t hough  the  P l a c k e t t - B u r m a n  design is 

used, on ly  the m i n i m u m  n u m b e r  of  runs  are direc- 

tly used, which  are ava i lab le  f rom the P lacke t t -  

B u r m a n  design for the k factor. Fo r  more  de- 

ta i led descr ip t ion,  the m i n i m u m  n u m b e r  of  runs  

to be per formed in order  to assess the factors 

unde r  s tudy is listed in T a b l e  1. Then ,  the to ta l  

n u m b e r  of  poin ts  in cube and  star, exc luding  

center  points ,  in var ious  compos i t e  designs pre- 

v iously  discussed, are summar ized  in T a b l e  2. 

Table 1 Number of runs assessed on the number of factors in the Plackett-Burman design 

Number of runs Number of real factors, k Number of columns 

4 2--3 4 
8 4--7 7 
12 8--11 11 
20 12~ 19 19 
24 20-- 23 23 

Table 2 Total experimental points excluding center points in some small composite designs 

Factors, k 

3 4 5 6 7 8 9 l0 

Number of coefficients 10 15 21 28 36 45 55 66 
Number of star points (2k) 6 8 10 12 14 16 18 20 

Points 
For 

cube 
portion 

Box and Hunter (1957) 8 16 16 32 64 64 128 128 
Hartley (1959) 4 8 -- 16 32 -- 64 -- 

Westlake (1965) -- -- 12 -- 26 -- 44 -- 
Draper (1985) -- -- 12 -- 28 -- 44 -- 

Draper & Lin (1990) -- -- 11 -- 22 -- 38 -- 
Proposed ISCD 4 8 8 8 8 12 12 12 

The symbol ' - '  denotes that the design is not provided by the developer. 
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Fig. 2 
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The incomplete small composite design for 

k=3 ,  q = l  and n0=l  

Fig 2 shows the proposed ISCD for k - -3 .  

This study recommends that the proposed 

ISCD model  be used only at the first i teration in 

the sequential  approximate  opt imizat ion (SAO) 

process. After the first iteration, the SAO gives 

an approximate  opt imum. In the next iteration, 

the exact function values are evaluated at this ap- 

proximate opt imum. Then, the approximate  mo- 

dels are updated using the information at the 

pre-sampled  ISCD plus this new point. 

3.2  L e a s t  s q u a r e s  f i t t i n g  b a s e d  on t h e  s i n -  

g u l a r  v a l u e  d e c o m p o s i t i o n  

In order to simplify the explanat ion of  the con- 

struction of  quadrat ic  response surface models 

using ISCD.  consider  the fol lowing matrix nota- 

tion as : 

y = X . O + e ,  (1) 

where y is a vector of  N observations,  X is a 

matrix of  known constants, ,8 is a vector of  n 

parameters to be estimated, and e is the vector of  

random errors. The  matrix X = (xu) is sometimes 

called the design mat r ix ;  it has N rows and n 

columns. 

In estimating the unknown constants,/~'~, by the 

method of  least squares, a set/~a,/~z, ' " ,  ft, ,  which 

minimize the sum of  the squares of  the residuals 

as 

1 1 - r  r - r m / m ~ R e = ~ B  (X X) f l -  (X y) B, (2) 

which can be simplified, in matrix form, as 
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(xTx) ~=XTy. (3) 
This is called the normal  equations.  However ,  it is 

noted that the normal  equat ions have a unique 

solution vector, 

~---- ( X r X ) - ~ X r y ,  (4) 

only if the n columns of  X are linear indepen- 

dents. 

As you can see, the proposed ISCD can give a 

rank-deficient  X matrix because its number  of  

points is less than n. Hence, this study uses a 

S ingular -Value  Decomposi t ion  (SVD) method 

(Press et. Al., 1986) to solve the normal  equat ion 

of  Eq. (3), because, in case of  an over-determined 

system, it produces a solution that is he best 

approximat ion in the least-square sense, and in 

case of  an under-determined system, it produces a 

solution whose values (for us, the ~ )  are smallest 

in the least square sense. SVD method decompose 

the square matrix K T x  as 

X T X = U . W . V L  (5) 

where the left singular vectors U are an n x n 

co lumn-o r thogona l  matrix, the right singular vec- 

tors V are n x n or thogonal  matrix, and an n x n 

diagonal  matrix W contains singular values. As 

U and V are or thogonal  respectively, their in- 

verses are equal to their transposes. Also, W is 

diagonal ,  thus its inverse is the diagonal  matrix 

whose elements are the reciprocals of  the elements 

ub. Hence, the inverse of  X r X  is 

( X r X ) - ~ = V  • [d i ag ( l /w3)  ] . U  r (6) 

The only thing that can go wrong with this con- 

struction is for one of  the singular values wfs  to 

be zero or for it to be so small that its value is 

dominated by r o u n d - o f f  error and therefore un- 

knowable.  In general, to overcome this problem, 

if any singular value w/ is zero or less than e" 

w max, SVD sets its reciprocal in Eq. (5) to zero, 

not to infinity. The value of  w max denotes the 

maximum value of  wj, j = l ,  2, -'-, ft. This cor- 

responds to adding to the fitted parameters /~ a 

zero multiple,  rather than some random large mu- 

ltiple, of  any linear combina t ion  of  basic func- 

tions [ U i - ( X r y ) ] v i  that are degenerate in the 

fit. In this study, the small value e is recom- 

mended as e =  I X l0 -s. 
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3.3 Conservat ive  least  squares  f i t t ing based 

on the dual i ty  theory 

In section 3.2, we explain SVD for least squares 

fitting. In this section, the conservative least 

square method is presented. As you can see, the 

approximate function, obtained from the conven- 

tional least square fitting, passes through the ob- 

servations shown in Fig. 3. Although this can 

be effective to understand the trend of the observa- 

tions throughout the approximated range, it can 

cause a serious problem in the convergence of the 

sequential approximate optimization process. In 

Y 
k 

Fig. 3 

p x  

The approximate function 37 obtained from 
the conventional least square fitting method 

Y 

o v e r  

l u X  

(a) Over-estimated approximate function 

Y 

Yummier 

P x 
(b) Under-estimated approximate function 

Fig. 4 The approximate function 33 obtained from 
the conservative least square fitting method 

other words, a feasible solution obtained from the 

approximate optimization is not feasible in the 

real design space in spite of successive updating 

the approximate models. This can retard the con- 

vergence rate of the approximate optimizations 

or fail to converge. Thus, this study proposes the 

conservative least squares fitting method (CON- 

FIT) shown in Fig. 4. 

After the least square fitting described in sec- 

tion 3.2, the approximate observations are ev- 

aluated as .v=X,8. Then, select the violated sets, 

So={ i : 37;<yi, i = 1 ,  "", k}  for the over-esti- 

mated approximate function Yooer and Su = 

{ i : :gi>Yi, i = 1 ,  "-, k } for the under-estimated 

approximate function Yunder, respectively. Hence, 

the formulation of conservative least square fit- 

ting finds /~c to minimize 

21 act ( x r x ) ~ c - -  (Xry)/~c (7) 

while satisfying 

xa~c=y~, (8) 
where the subscript a denotes that their com- 

ponents are included in the violated set So or 

Su. Using the Wolfe dual method (Fletcher, 

1987), Eqs. (7) and (8) can be transformed as 

max ~ - ~ ( x T x ) ~ c  - ( X ' y ) ' ~ c + , V ( x a ~ c - y o )  (9) 

subject to 

(XrX)/~c--  (Xry)  + X a A : 0 ,  (10) 

where ,,~ is the Lagrange multiplier vector. Using 

Eq. (10) to eliminate / ~  from the dual objective 

function of (9) gives the simplified problem as 

m a a x -  I A r A ) ,  + c  r,~, (I 1) 

where A = X a  ( X r X ) - l x r  and c = X a  ( x r x )  - t X r  

Y--Ya. In Eq. (11), the constant terms are neg- 
lected. Then, the optimum dual variables ) ,*=  

A-~e can be obtained from Eq. (11). Hence, sub- 

stituting this A* into Eq. (10) gives the explicit 

solution of the unknown coefficients /~, for con- 

servative fitting as 

/~c = ( x r x ) - 1  (Xry--XarA *) (12) 

In the above evaluations, ( x r x )  -1 is directly 

used from Eq. (6) and A -x is computed by SVD 
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in the same way that evaluates ( x r x ) - I  in Eq. 

(6). For clear description, the conservativeness 

of the proposed method is numerically examined 

in Section 5.1. In the next comparison, the cen- 

tral composite design (CCD) is used only for 

more clearly showing the conservativeness of the 

CONFIT. 

In Step 3, the approximate optimization pro- 

blem can be solved using any constrained opti- 

mization algorithms (Vanderplaats, 1984). Amo- 

ng them, this study uses the augmented Lagrange 

multiplier method (Kim, 2002). 

5. N u m e r i c a l  S tudies  

4. S e q u e n t i a l  Approx imate  

Opt imiza t ion  Combined with I S C D  

and C O N F I T  

In order to use the ISCD and the CONFIT in 

the sequential approximate optimization (SAO), 

The following computational procedure is des- 

cribed as : 

Step O. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Given the design range _Fd, the conver- 

gence tolerances el and e2. Set t : 0  and 

the design set Dt whose number of sam- 

piing points is one center point plus the 

points in cube and star listed in Table 2 

(ISCD). 

Evaluate function values of objective 

f (x) and inequality constraint functions 

gj (x) ,  j = l ,  "-', m for the sampling po 

ints in Dt and store them into the set Ft  

and Gt, respectively. 

Construct the approximate functions 

f ( b )  and o~j(x), j = l ,  "--, m using the 

CONFIT such as equations (4) and (12). 

Solve the following approximate optimi- 

zation problems : minimize f ( x )  subject 

to ~ j (x)  ~0,  j = l ,  ' " ,  m and x ~ < x i < x i  v 

for i = l , - - ' ,  n. Let :~* be the approxi- 

mate optimum. Go to Step 4. 

Evaluate the exact function values at the 

approximate optimum ~,.*. If the conver- 

gence criteria of I f ( ~ 7 ) - f ( x , ) l < - e ~ l  

f ( x , ) l  and g j ( ~ ' )  <e2 for j = l ,  "", m 

are satisfied for consecutive iterations, 

then the optimization is terminated. Oth- 

erwise, go to Step 5. 

Update the design set Dt and function 

value sets Ft  and Gt by including i~' and 

its" corresponding function values. Then, 

Return to Step 2 with t : t + l .  

Now, we will show the numerical performance 

of the proposed ISCD and CONFIT,  we will 

examine the conservativeness of the CONFIT 

using central composite design (CCD)" points. 

Then, the numerical performance of the SAO, 

developed based on the computational procedures 

described in section 4, is examined by solving the 

tracked vehicle suspension design problem. In this 

SAO, the values of convergence tolerances are 

used as e ~ : l X 1 0  -z and e z : I X 1 0  -4. 

5.1 Response surface modeling for sled test 
results 

In order to simply estimate the performance of 

the occupant protection in the vehicle, sled test is 

widely used. In this study, three design variables 

are chosen as l) the airbag vent hole size, 2) the 

seat belt strain rate and 3) the airbag firing time. 

The performance indexes to be approximated 

are the head injury criterion (HIC),and the chest 

acceleration of the dummy. For constructing the 

Table 3 The sled test simulation results for the 
central composite design 

Runs x~ x2 x3 HIC Chest Accel. 

1 --2.6 --1.5 --2.7 783.06 48.362 
2 2.4 --1.5 --2.7 697.33 47.804 
3 --2.6 1.5 --2.7 813.28 47.947 
4 2.4 1.5 --2.7 702.08 47.366 
5 --2.6 -- 1.5 2.7 860.05 48.354 
6 2.4 --1.5 2.7 751.18 48.162 
7 --2.6 1.5 2.7 889.19  47.941 
8 2.4 1.5 2.7 768.77 46.436 
9 --4.4 0.0 0.0 832.31 47.807 
10 4.0 0.0 0.0 671.89 46.806 
11 0.0 --2.5 0.0 736.99 48.891 
12 0.0 2.5 0.0 788.37 46.067 
13 0.0 0.0 --4.5 735.08 48.830 
14 0.0 0.0 4.5 842 .50  48.109 
15 0.0 0.0 0.0 754.35 44.461 
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Table  4 The approximate functions obtained by both least squares fitting methods 

Conventional 
Least Square 

Fitting 

Conservative 
Least Square 

Fitting 

/J(x) =751.75--20.35x~+8.158x2+ 12.327xa+O. 1992x~ + 2.972x~ + 2.206x~ + 
--. 2105x~xz -- 0.6036xlxa + O. 329xzxa 

(x) =44.519 --0.0898x1 --0.3813xz --0.0494xa +0.150x~Z + 0.4556x z +0.1895x~ + 
--O.0465XlX2--O.OlO6xlxs--O.O396xaxa 

/-7 (x) = 754.35 --  20.53xl + 7 8913xz + I 1.929xs + 0  42494x~ 2 + 3 6433xz z + 2.4139x32 + 

-- O. 77xlx2 -- O. 85704xlx3 -- O.O0667Xzxa 

C ( x )  =44.643-O.07044x~-O.44674x2-O.O665xa+O.15278x~ +O.5009x~ +O.1919xZ+ 

- 0.0734XaXz - 0.0265xlxa - 0.0167x2xa 

• accurate quadratic response surface modeling, a 
central composite design (CCD) is used. Thus, 
the total number of experimental points is 15 ( 1 + 
2"3+23). Table 3 lists the simulation results side 
by side. In this table, the values of  design vari- 
ables are the deviation from the nominal values• 
Two least squares fitting methods such as Eq. (4) 

and Eq. (12) are used to construct the surrogate 
models. As those two performance indexes are pre- 
ferred to minimize, the over-estimated approxi- 
mation function is employed in the CONFIT. 

Table 4 lists these approximate functions. Sym- 
bols / I ( x )  and C(x)  represent the approximate 
performance of HIC and chest acceleration of the 

dummy, respectively. It is noted that both fitting 
methods give somewhat different approximate 
functions• In other words, in order to improve the 
conservativeness, CONFIT does not simply shift 
the constant term of the approximate function 
obtained by the conventional fitting method but 
change whole the coefficients of its" approximate 
function. 

Now, in order to examine the conservativeness 
of the CONFIT,  the relative deviations are ch- 
ecked at the 15 experimental points. These devia- 
tions are defined as ( / ] ( x ) - H ( x ) ) / H ( x )  and 
(C (x) - C (x)) / C (x), respectively. Fig. 5 shows 
them graphically. As you can see, the proposed 
CONFIT gives positive- or zero-value deviations 
at all the experimental points• The conventional 
method, however, gives positive- or negative-val- 
ue deviations. That is, the conventional method 
gives the over-estimated results in some design 
region and the under-estimated results in the 
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Fig. 5 The comparisons of the relative deviations for 
two fitting methods 

other design region. We believe that these irregu- 
lar estimations of the conventional fitting method 
make the convergence of sequential approximate 
optimization to be difficuh. 

Copyright (C) 2003 NuriMedia Co., Ltd. 



Conservative Quadratic R S M  combined with Incomplete Small Composite Design and Conservative ... 705 

Table 5 The optimization results of a tracked vehicle system design 

Lower Bound Upper Bound Initial Design Final Design 

xl 175 185 180 180.17 
xz 140 160 150 150.05 
x3 130 150 140 143.59 
x4 140 160 150 151.34 
x5 40000 50000 45000 40000 
X6 0.13 0.14 0.135 0.139 
X7 I10 120 115 115.24 
x8 0.0035 0.0042 0.00385 0.0039 
x9 500 700 600 584.31 

Objective 23.106 15.071 
Max. of constraint --0.0475 --0.0012 

No. of analyses -- 34 

5.2 Tracked vehicle suspension design 
Fig. 6(a) shows a tracked vehicle suspension 

system, which is to be designed to minimize the 

extreme acceleration of  the mass center when the 

vehicle run over a bump (36 cm) shown in Fig. 6 

(b) for a given speed ( 4 0 k m / h ) .  The tracked 

vehicle model  is composed of  a hull, two sproc- 

kets, six wheels with HSU suspension systems and 

track. 9 design variables are divided the fol lowing 

three g roups :  1) the charging pressures for the 

HSU systems of  the I st, 2 nd, 5 th and 6 th wheels, 2) 

the static track tension and 3) the length of  a gas 

chamber,  the p re - load  on Bellevile springs, the 

diameter  of  orifices, and the choking flow rate 

for HSU systems. The motion of  the vehicle is 

constrained so that the maximum acceleration of  

mass center, wheel travels for the six wheels, and 

static wheel loads for the six wheels are within 

given limits. Also,  the charging pressures of  HSU 

systems for the 3 rd and 4 TM wheels are within given 

limits. The Recurdyn 1.0 (Bae et. al. 1999 ; Han 

et. al, 1999) is util ized to model  and perform the 

mul t i -body  system dynamic analyses. 

Table  5 lists the initial and final designs side by 

side. As you can see, the saturated design for the 

9 variables requires 55 points for constructing a 

quadrat ic  response surface model.  However ,  the 

proposed ISCD uses only the 31 points such as 

the 19 points for the linear and pure quadrat ic  

terms and the 12 points from the P lacke t -Burman 

design for the l inear and two-fac tor  interaction 

terms. Then, only 3 points are sequential ly added 
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(a) Tracked vehicle model 

36 cm (11 inch) 

(b) Single bump 

Fig. 6 The seven degree-of-freedom tracked vehicle 

suspension system 
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Fig. 7 The convergence histories of two approximate 
optimizations 

as the approximate  opt imizat ion progresses. Thus, 

total 34 analyses is used to solve this design 

problem. 

Fig. 7 shows the convergence histories of  the 
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two approximate optimization methods. In them, 

the Method-1 denotes the ISCD combined with 

CONF1T and the Method-2 denotes the ISCD 

combined with conventional least squares fitting 

method. In the Method-l ,  the over-estimation is 

employed for approximating the object and con- 

straint functions. It is noted that the Method-2 is 

oscillated during optimization processes and 

finally failed to convergence. We believe that you 

can see these oscillations whenever the response 

surface models approximated by the conventional 

fitting method is used in the SAO. 

6. Concluding Remarks 

In order to construct a conservative and econo- 

mical quadratic response surface model, this study 

proposes the incomplete small composite design 

(ISCD) and the conservative least squares fitting 

(CONFIT) method. As the original SCD is a 

heuristic approach, one can not obtain a unique 

design assessed on the number of variables. How- 

ever, the proposed ISCD gives a unique and eco- 

nomic design table, although it may induce the 

rank-deficiency in the normal equation. Thus, the 

singular value decomposition (SVD) is used to 

solve the rank-deficient normal equations. Also, 

in order to overcome the oscillation phenomena 

and the convergence difficulty in the sequential 

approximate optimization combined with conven- 

tional least squares fitting method, the conserva- 

tive least squares fitting (CONF1T) method is 

newly proposed, which is based on the duality 

theory and SVD. 

In order to show the numerical performance of 

the proposed methods, a general least squares 

fitting program implementing the CONFIT and 

the conventional method is developed. Also, a 

sequential approximate optimization program 

combined with ISCD and CONFIT is developed. 

Then, the fitting program is used to construct the 

surrogate model for approximating the sled test 

results and the SAO program is employed for 

solving the tracked vehicle suspension system 

design. In these numerical tests, it is shown that 

the CONFIT can successfully construct more con- 

servative RSM than that of conventional method. 

Especially, in the tracked vehicle suspension sys- 

tem design, it is noted that the CONFIT can play 

an important role in the convergence of SAO. We 

believe that the CONFIT is valuable, 

even though it may be combined with other ex- 

perimental designs. 
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